Numbers: Difference between revisions
Line 11: | Line 11: | ||
'''Induction:''' | '''Induction:''' | ||
[http://en.wikipedia.org/wiki/Mathematical_induction Mathematical induction | [http://en.wikipedia.org/wiki/Mathematical_induction Mathematical induction] is a well-known method to prove a statement <math>S(n)</math> for all natural numbers <math>n\geq n_S</math>, where <math>n_S</math> is some integral number specific to ´<math>S</math>. Two types of induction are often distinguished: | ||
# Ordinary induction: for <math>n>n_S</math>, <math>S(n-1)</math> is the induction hypothesis for the proof of <math>S(n)</math>. | # Ordinary induction: for <math>n>n_S</math>, <math>S(n-1)</math> is the induction hypothesis for the proof of <math>S(n)</math>. | ||
# Strong induction: for <math>n>n_S</math>, <math>S(n_S)\wedge S(n_S+1)\wedge\ldots\wedge S(n-1)</math> is the induction hypothesis for the proof of <math>S(n)</math>. | # Strong induction: for <math>n>n_S</math>, <math>S(n_S)\wedge S(n_S+1)\wedge\ldots\wedge S(n-1)</math> is the induction hypothesis for the proof of <math>S(n)</math>. |
Revision as of 18:08, 9 June 2015
Natural numbers
[math]\displaystyle{ \mathbb{N} }[/math] denotes the set of positive integral numbers:
- [math]\displaystyle{ \mathbb{N} := \{1,2,3,...\} }[/math]
- [math]\displaystyle{ \mathbb{N}_{0} := \mathbb{N} \cup \{0\} }[/math]
We say that [math]\displaystyle{ \mathbb{N}_{0} }[/math] is the set of all natural numbers.
Induction: Mathematical induction is a well-known method to prove a statement [math]\displaystyle{ S(n) }[/math] for all natural numbers [math]\displaystyle{ n\geq n_S }[/math], where [math]\displaystyle{ n_S }[/math] is some integral number specific to ´[math]\displaystyle{ S }[/math]. Two types of induction are often distinguished:
- Ordinary induction: for [math]\displaystyle{ n\gt n_S }[/math], [math]\displaystyle{ S(n-1) }[/math] is the induction hypothesis for the proof of [math]\displaystyle{ S(n) }[/math].
- Strong induction: for [math]\displaystyle{ n\gt n_S }[/math], [math]\displaystyle{ S(n_S)\wedge S(n_S+1)\wedge\ldots\wedge S(n-1) }[/math] is the induction hypothesis for the proof of [math]\displaystyle{ S(n) }[/math].
Both types of induction are logically equivalent. Therefore, in this wiki, they are not distinguished from each other: induction always means strong induction.
Real numbers
[math]\displaystyle{ \mathbb{R} }[/math] denotes the set of all real numbers. We also define the following sets:
- [math]\displaystyle{ \mathbb{R}^+ := \{x\mid x\in \mathbb{R},x\gt 0\} }[/math] (set of all positive real numbers)
- [math]\displaystyle{ \mathbb{R}^+_0 := \mathbb{R}^+ \cup \{ 0 \} }[/math]
Additionally [math]\displaystyle{ +\infty }[/math] or, for short, [math]\displaystyle{ \infty }[/math], denotes the unique number that is larger than all real numbers. Analogously, [math]\displaystyle{ -\infty }[/math] is the unique number that is smaller than all real numbers. By convention the following properties hold for all [math]\displaystyle{ x\in\mathbb{R} }[/math]:
- [math]\displaystyle{ x+\infty = \infty + x = \infty + \infty = \infty }[/math]
We say that [math]\displaystyle{ +\infty }[/math] and [math]\displaystyle{ -\infty }[/math] are the neutral elements of the minimum and maximum operation, respectively:
- [math]\displaystyle{ \min\emptyset = +\infty }[/math]
- [math]\displaystyle{ \max\emptyset = -\infty }[/math]
Empty sets and intervals
- For [math]\displaystyle{ i\gt j }[/math], we define [math]\displaystyle{ \{ x_i,...,x_j\}:=\emptyset }[/math].
- For [math]\displaystyle{ a\gt b }[/math], we define [math]\displaystyle{ [a,b]:=\emptyset }[/math]
Boolean
[math]\displaystyle{ \mathbb{B} }[/math] denotes the set of binary truth values (Boolean values).
- [math]\displaystyle{ \mathbb{B}:=\{ true,false\} }[/math]