Bounded priority queue: Difference between revisions
(→Method) |
(→Method) |
||
Line 36: | Line 36: | ||
== Method == | == Method == | ||
'''Name:''' find minimum | |||
'''Input:''' - | |||
'''Output:''' Returns the minimum key <math>K</math> currently stored in the queue. | |||
'''Precondition:''' It is <math>n>0</math>. | |||
'''Postcondition:''' - | |||
== Method == | == Method == |
Revision as of 09:34, 30 September 2014
General information
Representation invariant:
- This abstract data structure is generic and parameterized by a fixed key type [math]\displaystyle{ \mathcal{K} }[/math] and a fixed comparison [math]\displaystyle{ c }[/math] defined on [math]\displaystyle{ \mathcal{K} }[/math].
- An object with key type [math]\displaystyle{ \mathcal{K} }[/math] represents a finite, dynamically changing multiset, of elements of type [math]\displaystyle{ \mathcal{K} }[/math] (the multiset may be empty).
- An object has two additional attributes, which are natural numbers:
- Attribute [math]\displaystyle{ n }[/math] stores the current number of elements (in particular, [math]\displaystyle{ n }[/math] is dynamically changing).
- Attribute [math]\displaystyle{ N_\text{max}\in\mathrm{N} }[/math] is the maximum number of elements that can be stored in the queue ([math]\displaystyle{ N_\text{max} }[/math] is constant throughout the object's life time).
- Therefore, at any moment, it is [math]\displaystyle{ n\le N_\text{max} }[/math].
Constructor: Gets a comparison [math]\displaystyle{ c }[/math] and a natural number [math]\displaystyle{ N_\text{max} }[/math], and initializes the queue so as to be empty with a maximum capacity of [math]\displaystyle{ N_\text{max} }[/math] items.
Method
Name: insert
Input: A key [math]\displaystyle{ K\in N_\text{max} }[/math]
Output: A unique ID (natural number), which is permanently associated with the inserted key, until the key is extracted from the queue.
Precondition: It is [math]\displaystyle{ n\lt N_\text{max} }[/math].
Postcondition: The input key [math]\displaystyle{ K }[/math] is inserted into the queue (a.k.a. enqueued).
Method
Name: extract minimum
Input: -
Output: Returns the minimum key [math]\displaystyle{ K }[/math] that is currently stored in the queue.
Precondition: It is [math]\displaystyle{ n\gt 0 }[/math].
Postcondition: For the minimum key currently stored in the queue, one occurrence is removed (a.k.a. dequeued).
Method
Name: find minimum
Input: -
Output: Returns the minimum key [math]\displaystyle{ K }[/math] currently stored in the queue.
Precondition: It is [math]\displaystyle{ n\gt 0 }[/math].
Postcondition: -