Binary search tree: remove node: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
[[Category:Algorithm]] | [[Category:Algorithm]] | ||
[[Category:Binary Search Tree]] | [[Category:Binary Search Tree]] | ||
<div class="plainlinks" style="float:right;margin:0 0 5px 5px; border:1px solid #AAAAAA; width:auto; padding:1em; margin: 0px 0px 1em 1em;"> | |||
<div style="font-size: 1.8em;font-weight:bold;text-align: center;margin:0.2em 0 1em 0">Binary Search Tree</div> | |||
<div style="font-size: 1.2em; margin:.5em 0 1em 0; text-align:center">[[Sorted sequence]]</div> | |||
<div style="font-size: 1.2em; margin:.5em 0 .5em 0;text-align:center">[[File:olw_logo1.png|20px]][https://openlearnware.tu-darmstadt.de/#!/resource/binary-search-tree-1938 Openlearnware]<br>See Chapter 5</div> | |||
</div> | |||
== General Information == | == General Information == | ||
'''Algorithmic problem:''' See the remark clause of [[Binary Search Tree]]; pointer '''p''' as defined there is the input. | '''Algorithmic problem:''' See the remark clause of [[Binary Search Tree]]; pointer '''p''' as defined there is the input. |
Revision as of 09:25, 1 October 2014
General Information
Algorithmic problem: See the remark clause of Binary Search Tree; pointer p as defined there is the input.
Prerequisites: [math]\displaystyle{ p.left \neq void }[/math]
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p' }[/math] of type "pointer to a binary search tree node".
Abstract View
Invariant:
- The immediate predecessor of K is in the range of [math]\displaystyle{ p' }[/math].
- It is [math]\displaystyle{ p'.right = void }[/math].
Variant: The pointer [math]\displaystyle{ p' }[/math] descends one level deeper to [math]\displaystyle{ p'.right }[/math].
Break condition: It is [math]\displaystyle{ p'.right.right = void }[/math].
Induction Basis
Abstract view: If [math]\displaystyle{ p.left }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, initialize [math]\displaystyle{ p' }[/math].
Implementation:
- If [math]\displaystyle{ p.left.right = void }[/math]:
- Set [math]\displaystyle{ p.key := p.left.key }[/math]
- Set [math]\displaystyle{ p.left := p.left.left }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p' := p.left }[/math].
Proof: Obvious.
Induction Step
Abstract view: If [math]\displaystyle{ p'.right }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, let p' descend one level deeper.
Implementation:
- If [math]\displaystyle{ p'.right.right = void }[/math]:
- Set [math]\displaystyle{ p.key := p'.right.key }[/math].
- Set [math]\displaystyle{ p'.right := p'.right.left }[/math].
- Terminate the algorithm.
Correctness: Obvoius.
Complexity
Statement: Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).
Proof: Obvious.