Binary search tree: remove node: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
[[Category:Algorithm]]
[[Category:Algorithm]]
[[Category:Binary Search Tree]]
[[Category:Binary Search Tree]]
<div class="plainlinks" style="float:right;margin:0 0 5px 5px; border:1px solid #AAAAAA; width:auto; padding:1em; margin: 0px 0px 1em 1em;">
<div style="font-size: 1.8em;font-weight:bold;text-align: center;margin:0.2em 0 1em 0">Binary Search Tree</div>


<div style="font-size: 1.2em; margin:.5em 0 1em 0; text-align:center">[[Sorted sequence]]</div>
<div style="font-size: 1.2em; margin:.5em 0 .5em 0;text-align:center">[[File:olw_logo1.png|20px]][https://openlearnware.tu-darmstadt.de/#!/resource/binary-search-tree-1938 Openlearnware]<br>See Chapter 5</div>
</div>
== General Information ==
== General Information ==
'''Algorithmic problem:''' See the remark clause of [[Binary Search Tree]]; pointer '''p''' as defined there is the input.
'''Algorithmic problem:''' See the remark clause of [[Binary Search Tree]]; pointer '''p''' as defined there is the input.

Revision as of 09:25, 1 October 2014

General Information

Algorithmic problem: See the remark clause of Binary Search Tree; pointer p as defined there is the input.

Prerequisites: [math]\displaystyle{ p.left \neq void }[/math]

Type of algorithm: loop

Auxiliary data: A pointer [math]\displaystyle{ p' }[/math] of type "pointer to a binary search tree node".

Abstract View

Invariant:

  1. The immediate predecessor of K is in the range of [math]\displaystyle{ p' }[/math].
  2. It is [math]\displaystyle{ p'.right = void }[/math].

Variant: The pointer [math]\displaystyle{ p' }[/math] descends one level deeper to [math]\displaystyle{ p'.right }[/math].

Break condition: It is [math]\displaystyle{ p'.right.right = void }[/math].

Induction Basis

Abstract view: If [math]\displaystyle{ p.left }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, initialize [math]\displaystyle{ p' }[/math].

Implementation:

  1. If [math]\displaystyle{ p.left.right = void }[/math]:
    1. Set [math]\displaystyle{ p.key := p.left.key }[/math]
    2. Set [math]\displaystyle{ p.left := p.left.left }[/math].
    3. Terminate the algorithm.
  2. Otherwise, set [math]\displaystyle{ p' := p.left }[/math].

Proof: Obvious.

Induction Step

Abstract view: If [math]\displaystyle{ p'.right }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, let p' descend one level deeper.

Implementation:

  1. If [math]\displaystyle{ p'.right.right = void }[/math]:
    1. Set [math]\displaystyle{ p.key := p'.right.key }[/math].
    2. Set [math]\displaystyle{ p'.right := p'.right.left }[/math].
  2. Terminate the algorithm.

Correctness: Obvoius.

Complexity

Statement: Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).

Proof: Obvious.