Numbers: Difference between revisions
mNo edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Category:Checkup]] | |||
[[Category:Background]] | [[Category:Background]] | ||
==Natural numbers== | ==Natural numbers== | ||
Line 8: | Line 9: | ||
We say that <math>\mathbb{N}_{0}</math> is the set of all '''natural numbers'''. | We say that <math>\mathbb{N}_{0}</math> is the set of all '''natural numbers'''. | ||
==Real numbers== | |||
<math>\mathbb{R}</math> denotes the set of all '''real numbers'''. We also define the following sets: | |||
: <math>\mathbb{R}^+ := \{x\mid x\in \mathbb{R},x>0\}</math> (set of all positive real numbers) | |||
: <math>\mathbb{R}^+_0 := \mathbb{R}^+ \cup \{ 0 \}</math> | |||
Additionally <math>+\infty</math> or, for short, <math>\infty</math>, denotes the unique number that is larger than all real numbers. Analogously, <math>-\infty</math> is the unique number that is smaller than all real numbers. By convention the following properties hold for all <math>x\in\mathbb{R}</math>: | |||
: <math>x+\infty = \infty + x = \infty + \infty = \infty</math> | |||
We say that <math>+\infty</math> and <math>-\infty</math> are the '''neutral elements''' of the minimum and maximum operation, respectively: | |||
: <math>\min\emptyset = +\infty</math> | |||
: <math>\max\emptyset = -\infty</math> | |||
==Empty sets and intervals== | |||
# For <math>i>j</math>, we define <math>\{ x_i,...,x_j\}:=\emptyset</math>. | |||
# For <math>a>b</math>, we define <math>[a,b]:=\emptyset</math> | |||
==Boolean== | |||
<math>\mathbb{B}</math> denotes the set of binary truth values ('''Boolean''' values). | |||
: <math>\mathbb{B}:=\{ true,false\}</math> |
Revision as of 09:41, 1 October 2014
Natural numbers
[math]\displaystyle{ \mathbb{N} }[/math] denotes the set of positive integral numbers:
- [math]\displaystyle{ \mathbb{N} := \{1,2,3,...\} }[/math]
- [math]\displaystyle{ \mathbb{N}_{0} := \mathbb{N} \cup \{0\} }[/math]
We say that [math]\displaystyle{ \mathbb{N}_{0} }[/math] is the set of all natural numbers.
Real numbers
[math]\displaystyle{ \mathbb{R} }[/math] denotes the set of all real numbers. We also define the following sets:
- [math]\displaystyle{ \mathbb{R}^+ := \{x\mid x\in \mathbb{R},x\gt 0\} }[/math] (set of all positive real numbers)
- [math]\displaystyle{ \mathbb{R}^+_0 := \mathbb{R}^+ \cup \{ 0 \} }[/math]
Additionally [math]\displaystyle{ +\infty }[/math] or, for short, [math]\displaystyle{ \infty }[/math], denotes the unique number that is larger than all real numbers. Analogously, [math]\displaystyle{ -\infty }[/math] is the unique number that is smaller than all real numbers. By convention the following properties hold for all [math]\displaystyle{ x\in\mathbb{R} }[/math]:
- [math]\displaystyle{ x+\infty = \infty + x = \infty + \infty = \infty }[/math]
We say that [math]\displaystyle{ +\infty }[/math] and [math]\displaystyle{ -\infty }[/math] are the neutral elements of the minimum and maximum operation, respectively:
- [math]\displaystyle{ \min\emptyset = +\infty }[/math]
- [math]\displaystyle{ \max\emptyset = -\infty }[/math]
Empty sets and intervals
- For [math]\displaystyle{ i\gt j }[/math], we define [math]\displaystyle{ \{ x_i,...,x_j\}:=\emptyset }[/math].
- For [math]\displaystyle{ a\gt b }[/math], we define [math]\displaystyle{ [a,b]:=\emptyset }[/math]
Boolean
[math]\displaystyle{ \mathbb{B} }[/math] denotes the set of binary truth values (Boolean values).
- [math]\displaystyle{ \mathbb{B}:=\{ true,false\} }[/math]