String matching based on finite automaton: Difference between revisions
No edit summary |
|||
Line 23: | Line 23: | ||
==Induction basis== | ==Induction basis== | ||
'''Abstract view:''' | |||
# <math>R</math> is empty. | |||
# The initial value of <math>q</math> is zero. | |||
# The look-up table <math>\Delta</math> must be built. | |||
'''Implementation:''' | |||
# Set <math>R:=\emptyset</math>. | |||
# Set <math>q:=0</math>. | |||
# For <math>c\in \Sigma</math>: If <math>T[1]=c</math>, set <math>\Delta [0,c]:=1</math>; otherwise, set <math>\Delta[0,c]:=0</math>. | |||
# For <math>j\in \{ 1,...,m\}</math> and <math>c \in \Sigma</math>: | |||
## Set <math>k:=\min \{ m,j+1 \}</math>. | |||
## While <math>k>0</math> and <math>(T[1],...,T[k]) \neq (T[j-k+2],...,T[j],c)</math>, decrease <math>k</math> by <math>1</math>. | |||
## Set <math>\Delta[j,c]:=k</math>. | |||
'''Proof:''' Nothing is to show for <math>R</math> and <math>q</math>, so consider <math>\Delta</math>. We have to show that the above-described intended semantics of <math>\Delta</math> is indeed fulfilled, because these intended semantics of <math>\Delta</math> will be the basis for the correctness proof of the induction step. | |||
Correctness of Step 3 is also easy to see, so consider Step 4. | |||
According to its intended semantics, <math>\Delta [j,c]</math> can neither be larger than <math>m</math> nor larger than <math>j+1</math>; in fact, any string longer than <math>m</math> is not a prefix of <math>T</math>, and any string longer than <math>j+1</math> is not a suffix of <math>(T[1],...,T[j],c)</math>. This observation justifies the initialization of <math>k</math> in Step 4.1. | |||
Now, the countdown of <math>k</math> in Step 4.2 will terminate at the moment when, for the first time, <math>k</math> fulfills <math>(T[1],...,T[k])=(T[j-k+2],...,T[j],c)</math>. Note that this equality is tantamount to the statement that the prefix <math>(T[1],...,T[k])</math> of <math>T</math> is a suffix of <math>(T[j-k+2],...,T[j],c)</math>. Due to the countdown, <math>k</math> is largest, so <math>\Delta [j,c]</math> conforms to its intended semantics. On the other hand, if the countdown terminates with <math>k=0</math>, there was no such non-empty substring, so it is <math>\Delta [j,c]=0</math>, which conforms to the intended semantics in this case as well. | |||
==Induction step== | ==Induction step== |
Revision as of 13:51, 1 October 2014
Algorithmic problem: One-dimensional string matching
Prerequisites:
Type of algorithm: loop
Auxiliary data:
- A current maximum prefix length [math]\displaystyle{ q\in \{ 0,...,m\} }[/math].
- A look-up table [math]\displaystyle{ \Delta }[/math] with rows [math]\displaystyle{ \{ 0,...,m\} }[/math] and one column for each character in the alphabet [math]\displaystyle{ \Sigma }[/math]. Intended semantics: The value [math]\displaystyle{ \Delta [j,c] }[/math] is the length of the longest prefix of [math]\displaystyle{ T }[/math] that is also a suffix of [math]\displaystyle{ (T[1],...,T[j],c) }[/math].
Abstract view
Invariant: After [math]\displaystyle{ i \ge 0 }[/math]:
- In ascending order, [math]\displaystyle{ R }[/math] contains the start indexes of all occurrences of [math]\displaystyle{ T }[/math] in [math]\displaystyle{ S }[/math] that lie completely in [math]\displaystyle{ (S[1],...,S[i]) }[/math]; in other words, the start indexes in the range [math]\displaystyle{ (1,...,i-m+1]) }[/math].
- The value of [math]\displaystyle{ q }[/math] is the largest value [math]\displaystyle{ k }[/math] such that [math]\displaystyle{ (S[i-k+1],...,S[i])=(T[1],...,T[k]) }[/math].
To understand the rationale of the second invariant, note that [math]\displaystyle{ (S[i-k+1],...,S[i])=(T[1],...,T[k]) }[/math] is equivalent to the informal statement that [math]\displaystyle{ (S[i-k+1],...,S[i]) }[/math] is a candidate for an occurrence of [math]\displaystyle{ T }[/math]. In particular, [math]\displaystyle{ i-q+1 }[/math] is always the "most advanced" candidate (and [math]\displaystyle{ q=0 }[/math] means that, at the moment, there is no candidate at all).
Variant: [math]\displaystyle{ i }[/math] increases by [math]\displaystyle{ 1 }[/math].
Break condition: [math]\displaystyle{ i=n }[/math].
Induction basis
Abstract view:
- [math]\displaystyle{ R }[/math] is empty.
- The initial value of [math]\displaystyle{ q }[/math] is zero.
- The look-up table [math]\displaystyle{ \Delta }[/math] must be built.
Implementation:
- Set [math]\displaystyle{ R:=\emptyset }[/math].
- Set [math]\displaystyle{ q:=0 }[/math].
- For [math]\displaystyle{ c\in \Sigma }[/math]: If [math]\displaystyle{ T[1]=c }[/math], set [math]\displaystyle{ \Delta [0,c]:=1 }[/math]; otherwise, set [math]\displaystyle{ \Delta[0,c]:=0 }[/math].
- For [math]\displaystyle{ j\in \{ 1,...,m\} }[/math] and [math]\displaystyle{ c \in \Sigma }[/math]:
- Set [math]\displaystyle{ k:=\min \{ m,j+1 \} }[/math].
- While [math]\displaystyle{ k\gt 0 }[/math] and [math]\displaystyle{ (T[1],...,T[k]) \neq (T[j-k+2],...,T[j],c) }[/math], decrease [math]\displaystyle{ k }[/math] by [math]\displaystyle{ 1 }[/math].
- Set [math]\displaystyle{ \Delta[j,c]:=k }[/math].
Proof: Nothing is to show for [math]\displaystyle{ R }[/math] and [math]\displaystyle{ q }[/math], so consider [math]\displaystyle{ \Delta }[/math]. We have to show that the above-described intended semantics of [math]\displaystyle{ \Delta }[/math] is indeed fulfilled, because these intended semantics of [math]\displaystyle{ \Delta }[/math] will be the basis for the correctness proof of the induction step.
Correctness of Step 3 is also easy to see, so consider Step 4.
According to its intended semantics, [math]\displaystyle{ \Delta [j,c] }[/math] can neither be larger than [math]\displaystyle{ m }[/math] nor larger than [math]\displaystyle{ j+1 }[/math]; in fact, any string longer than [math]\displaystyle{ m }[/math] is not a prefix of [math]\displaystyle{ T }[/math], and any string longer than [math]\displaystyle{ j+1 }[/math] is not a suffix of [math]\displaystyle{ (T[1],...,T[j],c) }[/math]. This observation justifies the initialization of [math]\displaystyle{ k }[/math] in Step 4.1.
Now, the countdown of [math]\displaystyle{ k }[/math] in Step 4.2 will terminate at the moment when, for the first time, [math]\displaystyle{ k }[/math] fulfills [math]\displaystyle{ (T[1],...,T[k])=(T[j-k+2],...,T[j],c) }[/math]. Note that this equality is tantamount to the statement that the prefix [math]\displaystyle{ (T[1],...,T[k]) }[/math] of [math]\displaystyle{ T }[/math] is a suffix of [math]\displaystyle{ (T[j-k+2],...,T[j],c) }[/math]. Due to the countdown, [math]\displaystyle{ k }[/math] is largest, so [math]\displaystyle{ \Delta [j,c] }[/math] conforms to its intended semantics. On the other hand, if the countdown terminates with [math]\displaystyle{ k=0 }[/math], there was no such non-empty substring, so it is [math]\displaystyle{ \Delta [j,c]=0 }[/math], which conforms to the intended semantics in this case as well.