Floyd-Warshall: Difference between revisions
Dkratschmann (talk | contribs)  (Created page with "'''Algorithmic problem:''' All pairs shortest paths  '''Prerequisites:''' None  '''Type of algorithm:''' loop  '''Auxilliary data:''' # A constant representing the number...")  | 
				Dkratschmann (talk | contribs)  No edit summary  | 
				||
| Line 9: | Line 9: | ||
# A [[distance-valued]] <math>(n \times n)</math> matrix <math>M</math>  | # A [[distance-valued]] <math>(n \times n)</math> matrix <math>M</math>  | ||
# C An ordering of all nodes, that is, <math>V = \{u_1, \ldots ,u_n\}</math>  | # C An ordering of all nodes, that is, <math>V = \{u_1, \ldots ,u_n\}</math>  | ||
<div class="plainlinks" style="float:right;margin:0 0 5px 5px; border:1px solid #AAAAAA; width:auto; padding:1em; margin: 0px 0px 1em 1em;">  | |||
<div style="font-size: 1.8em;font-weight:bold;text-align: center;margin:0.2em 0 1em 0">Dijkstra</div>  | |||
<div style="font-size: 1.2em; margin:.5em 0 1em 0; text-align:center">whatever</div>  | |||
<div style="font-size: 1.2em; margin:.5em 0 .5em 0;text-align:center">[[File:olw_logo1.png|20px]][https://openlearnware.tu-darmstadt.de/#!/resource/dijkstra-2310 Openlearnware]</div>  | |||
</div>  | |||
== Abstract View ==  | == Abstract View ==  | ||
Revision as of 14:36, 4 October 2014
Algorithmic problem: All pairs shortest paths
Prerequisites: None
Type of algorithm: loop
Auxilliary data:
- A constant representing the number of node: [math]\displaystyle{ n = |V| }[/math]
 - A distance-valued [math]\displaystyle{ (n \times n) }[/math] matrix [math]\displaystyle{ M }[/math]
 - C An ordering of all nodes, that is, [math]\displaystyle{ V = \{u_1, \ldots ,u_n\} }[/math]
 
Abstract View
Invariant: After [math]\displaystyle{ i \ge 0 }[/math] iterations, for [math]\displaystyle{ v,w \in V }[/math], [math]\displaystyle{ M(v,w) }[/math] is the length of a shortest [math]\displaystyle{ (v,w) }[/math]-path subject to the constraint that all internal nodes of the path belong to [math]\displaystyle{ \{u_1, \ldots , u_i\} }[/math].
Varian: [math]\displaystyle{ i }[/math] increases by [math]\displaystyle{ 1 }[/math].
Break condition: It is [math]\displaystyle{ i=n }[/math]
Induction basis
Abstract view: [math]\displaystyle{ \forall v,w \in V }[/math] we set
- [math]\displaystyle{ M(v,v):=0, \forall v \in V }[/math]
 - [math]\displaystyle{ M(v,w):=l(v,w), (v,w) \in A }[/math]
 - [math]\displaystyle{ M(v,w):= +\infty }[/math], otherwise
 
Implementation: Obvious.
Proof: Nothing to show.
Induction step
Abstract view:
Implementation:
Correctness: Let [math]\displaystyle{ p }[/math] denote a shoortest [math]\displaystyle{ (v,w }[/math]-path subject to the constraint that all internal nodes are taken from [math]\displaystyle{ \{u_1, \ldots, u_n \} }[/math].
- If [math]\displaystyle{ p }[/math] does not contain [math]\displaystyle{ u_i }[/math], [math]\displaystyle{ p }[/math] is even a shortest [math]\displaystyle{ (v,w) }[/math]-path such that all internal nodes are taken from [math]\displaystyle{ \{u_1, \ldots , u_{i-1} \} }[/math]. In this case, the induction hypothesis implies that the value of [math]\displaystyle{ M(v,w) }[/math] immediately before the i-th iteration equals the length of [math]\displaystyle{ p }[/math]. Clearly, the i-th iteration does not change the value of [math]\displaystyle{ M(v,w) }[/math] in this case.
 - On the other hand, suppose [math]\displaystyle{ p }[/math] does contain [math]\displaystyle{ u_i }[/math]. Due to the prefix property, the segment of [math]\displaystyle{ p }[/math] from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ u_i }[/math] and from [math]\displaystyle{ u_i }[/math] to [math]\displaystyle{ w }[/math] are a shortest [math]\displaystyle{ (v,u_i) }[/math]-path and a shortest [math]\displaystyle{ (u_i,w) }[/math]-path, respectively, subject to the constraint that all internal nodes are from [math]\displaystyle{ \{u_1, \ldots , u_{i-1} \} }[/math]. The induction hypothesis implies that tehese lengths equal the values [math]\displaystyle{ M(v,u_i) }[/math] and [math]\displaystyle{ M(u_i, w) }[/math], respectively.
 
Complexity
Statement: [math]\displaystyle{ \mathcal{O}(n^3) }[/math]
Proof: The overall loop has [math]\displaystyle{ n }[/math] iterations. In each iteration, we update all [math]\displaystyle{ n^2 }[/math] matrix entities. Each update requires a constant number of steps.