Dijkstra
Jump to navigation
Jump to search
Dijstra's algorithm is a graph algortihm solving the single-source shortest-paths problem.
Requirements
- directed Graph [math]\displaystyle{ G=(V,E) }[/math]
- weight function [math]\displaystyle{ w\colon E\to\mathbb R }[/math]
- [math]\displaystyle{ \forall(u,v)\in E\colon w(u,v)\geq 0 }[/math]
- source [math]\displaystyle{ s\in V }[/math]
- Datastruct [math]\displaystyle{ S }[/math]
- Datastruct [math]\displaystyle{ Q }[/math]
General information
Algorithmic problem: Single source shortest paths
Prerequisities: For all [math]\displaystyle{ \alpha \in A }[/math], it is [math]\displaystyle{ l(a) \geq 0 }[/math].
Type of algortihm: loop
Auxiliary data:
- A temporary distance value [math]\displaystyle{ \delta(v) \in \R }[/math] for each node [math]\displaystyle{ v \in V }[/math]. At termination, it is [math]\displaystyle{ \delta(v) = \Delta(v) }[/math] for all [math]\displaystyle{ v \in V }[/math].
- A bounded priority queue [math]\displaystyle{ Q }[/math] of size [math]\displaystyle{ |V|-1 }[/math], which contains nodes from [math]\displaystyle{ V }[/math] and takes their [math]\displaystyle{ \delta }[/math]-values as keys. The node with minimal key is returned.
Abstract view
Induction basis
Induction step
Complexity
Pseudocode
DIJKSTRA(G,w,s)
DIJKSTRA(G,w,s)
1 INITIALIZE-SINGLE-SOURCE(G,s)
2 S = ∅
3 Q = G.V
4 while Q ≠ ∅
5 u = EXTRACT-MIN(Q)
6 S = S ∪ {u}
7 for each vertex v ∈ G.Adj[u]
8 RELAX(u,v,w)
RELAX(u,v,w)
RELAX(u,v,w)
1 if v.d > u.d + w(u,v)
2 v.d = u.d + w(u,v)
3 v.π = u
INITIALIZE-SINGLE-SOURCE(G,s)
INITIALIZE-SINGLE-SOURCE(G,s)
1 for each vertex v ∈ G.V
2 v.d = ∞
3 v.π = NIL
4 s.d = 0