Successive shortest paths
Abstract view
Definition:
- The imbalance of a node [math]\displaystyle{ v\in V }[/math] is defined as [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)-b(v) }[/math].
- The imbalance of a node [math]\displaystyle{ v\in V }[/math] is underestimating if:
- If [math]\displaystyle{ b(v)\gt 0 }[/math], then [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)\leq b(v) }[/math].
- If [math]\displaystyle{ b(v)\lt 0 }[/math], then [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)\geq b(v) }[/math].
- If [math]\displaystyle{ b(v)=0 }[/math], then [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)=b(v) }[/math].
- The total imbalance is the sum of the absolute values of all imbalances, taken over all nodes.
Invariant:
- The capacity constraints are fulfilled, that is, [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math] for all [math]\displaystyle{ a\in A }[/math].
- There is no negative cycle in the residual network of [math]\displaystyle{ f }[/math].
- The imbalance of ever node is underestimating.
Variant: The total imbalance strictly decreases.
Induction basis
Abstract view: Start with the zero flow.
Proof: Obvious.
Induction step
- If there