Binary search tree: remove
General Information
Algorithmic Problem: Sorted Sequence:remove
Type of algorithm: loop
Auxiliary data: A pointer p of type "pointer to binary search tree node".
Abstract view
Invariant After [math]\displaystyle{ i \geq 0 }[/math] interations:
- The pointer p points to a tree node v on height level i.
- The key K is in range of p, but [math]\displaystyle{ p.key \neq K }[/math].
Variant: i increased by 1.
Break Condition: One of the following two conditions is fulfilled:
- It is [math]\displaystyle{ K \lt p.key }[/math] and either [math]\displaystyle{ p.left = void }[/math] or [math]\displaystyle{ p.left.key = K }[/math].
- It is [math]\displaystyle{ K \gt p.key }[/math] and either [math]\displaystyle{ p.right = void }[/math] or [math]\displaystyle{ p.right.key = K }[/math].
Induction basis
Abstract view:
- If the root contains K, remove this occurrence of K.
- Otherwise, initialize p so as to point to the root.
Implementation:
- If [math]\displaystyle{ root.key = K }[/math]:
- If [math]\displaystyle{ root.left = void }[/math], set [math]\displaystyle{ root := root.right }[/math]
- Otherwise, if [math]\displaystyle{ root.right = void }[/math], set [math]\displaystyle{ root := root.left }[/math].
- Otherwise, call method remove node with pointer root.
- Terminate the algorithm and return true.
- Otherwise set [math]\displaystyle{ p := root }[/math]
Proof: Nothing to show.
Induction step
Complexity
Statement: Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).
Proof: Obvious.
Implementation
TREE-DELETE(T,z)
- if left[z] = NULL or right[z] = NULL
- then y = z
- else y = TREE-SUCCESSOR(z)
- if left[y] ≠ NULL
- then x = left[y]
- else x = right[y]
- if x ≠ NULL
- then p[x] = p [y]
- if p[y] = NULL
- then root[T] = x
- else if y = left[p[y]]
- then left[p[y]] = x
- else right[p[y]] = x
- if y ≠ z
- then key[z] = key[y]
- copy y's satellite data into z
- then key[z] = key[y]
- return y