Binary search tree: insert
General Information
Algorithmic problem: Sorted sequence#Insert
Type of algorithm: loop
Auxiliary data: A pointer p of type "pointer to binary search tree node of type [math]\displaystyle{ \kappa }[/math]".
Abstract View
Invariant: After [math]\displaystyle{ i \geq 0 }[/math] iterations:
- The pointer p points to a tree node v on height level i.
- The Key K is in the range of v.
Variant: i increased by 1.
Break condition: One of the following two conditions is fulfilled:
- It is [math]\displaystyle{ p.key \geq K }[/math] and [math]\displaystyle{ p.left = void }[/math].
- It is [math]\displaystyle{ p.key \leq K }[/math] and [math]\displaystyle{ p.right = void }[/math].
Induction Basis
Abstract view: If the tree is empty, a new root with key K is created; otherwise, p is initialized so as to point to the root.
Implementation:
- If [math]\displaystyle{ root = void }[/math]:
- Create a new binary search tree node and let root point to it.
- Set [math]\displaystyle{ root.key := K, root.left := void }[/math]. and [math]\displaystyle{ root.right := void }[/math].
- Otherwise, set [math]\displaystyle{ p := root }[/math].
Proof: Obvious.
Induction Step
Abstract view: If the direction where to go next is void, insert K in that empty slot and terminate the algorithm. Otherwise, proceed in that direction.
Implementation:
- If [math]\displaystyle{ p.key = K }[/math]:
- If [math]\displaystyle{ p.left = void }[/math]:
- Create a new node and let [math]\displaystyle{ p.left }[/math] point to it.
- Set [math]\displaystyle{ p.left.key := K }[/math], [math]\displaystyle{ p.left.left := void }[/math], and [math]\displaystyle{ p.left.right := void }[/math].
- Terminate the algorithm.
- Otherwise, if [math]\displaystyle{ p.right = void }[/math]:
- Create a new node and let [math]\displaystyle{ p.right }[/math] point to it.
- Set [math]\displaystyle{ p.left.key := K }[/math], [math]\displaystyle{ p.left.left := void }[/math], and [math]\displaystyle{ p.left.right := void }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p.left }[/math].
- If [math]\displaystyle{ p.left = void }[/math]:
- Otherwise (that is, [math]\displaystyle{ p.key \gt K }[/math]):
- If [math]\displaystyle{ p.left = void }[/math]:
- Create a new node and let [math]\displaystyle{ p.left }[/math] point to it.
- Set [math]\displaystyle{ p.left.key := K }[/math], [math]\displaystyle{ p.left.left := void }[/math], and [math]\displaystyle{ p.left.right := void }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p.left }[/math].
- If [math]\displaystyle{ p.left = void }[/math]:
- Otherwise (that is, [math]\displaystyle{ p.key \lt K }[/math]):
- If [math]\displaystyle{ p.right = void }[/math]:
- Create a new node and let [math]\displaystyle{ p.right }[/math] point to it.
- Set [math]\displaystyle{ p.right.key := K }[/math], [math]\displaystyle{ p.right.left := void }[/math], and [math]\displaystyle{ p.right.right := void }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p := p.right }[/math].
- If [math]\displaystyle{ p.right = void }[/math]:
Copmplexity
Statement: Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).
Proof: Obvious.
Pseudocode
TREE-INSERT(T, z)
- y = Null
- x = root(T)
- while x ≠ NULL
- y = x
- if key[z] < key[x]
- then x = left[x]
- then x = right[x]
- p[z] = y
- if y = NULL
- then root[T] = z //Tree was empty
- else if key[z] < key[y]
- then left[y] = z
- else right[y] = z