Array list: find
Algorithmic problem: Ordered sequence: find
Prerequisites: None.
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p }[/math] of type "pointer to list item of array lists of component type [math]\displaystyle{ \Kappa }[/math]".
Abstract view
Invariant: After [math]\displaystyle{ i \ge 0 }[/math] iterations:
- The pointer [math]\displaystyle{ p }[/math] points to the list item at position [math]\displaystyle{ i + 1 }[/math] (or is void if no such item exists).
- The first [math]\displaystyle{ i }[/math] arrays in the list do not contain [math]\displaystyle{ \Kappa }[/math].
Variant: The pointer [math]\displaystyle{ p }[/math] is moved one step forward to the next array list item.
Break condition: Either [math]\displaystyle{ p= }[/math]void or, otherwise, [math]\displaystyle{ \Kappa \in \{p.A[1], \ldots, p.A[p.n]\} }[/math].
Induction basis
Abstract view: Set [math]\displaystyle{ p:= }[/math] first.
Implementation: Obvious.
Proof: Nothing to show.
Induction step
Abstract view:
- Terminate the algorithm if the end of the list is reached or, otherwise, if [math]\displaystyle{ \Kappa }[/math] is found in the current array.
- Otherwise, [math]\displaystyle{ p }[/math] is moved one step forward to the next array.
Implementation:
- If [math]\displaystyle{ p= }[/math]void, terminate the algorithm and return false.
- Otherwise, if [math]\displaystyle{ p.A[j] = \Kappa }[/math] for some [math]\displaystyle{ j \in \{1, \ldots, p.n\} }[/math], terminate the algorithms and return true.
- Set [math]\displaystyle{ p:=p.next }[/math].
Correctness: Obvious.
Complexity
Statement: Linear in the length of the sequence in the worst case.
Proff: Obvious.