Basics of shortest paths
Path lengths and distances
Let [math]\displaystyle{ G=(V,A) }[/math] be a simple directed graph and for each arc [math]\displaystyle{ a\in A }[/math] let [math]\displaystyle{ \ell(a) }[/math] be a real number, the length of [math]\displaystyle{ a }[/math].
- The length of an ordinary path (incl. ordinary cycles) is the sum of the lengths of all arcs on this path.
- Depending on the context, the length of a generalized path (incl. generalized cycles) is either defined identically to ordinary paths or, alternatively, the lengths of the backward arcs are not added but subtracted.
- If the length of an ordinary or generalized cycle is negative, this cycle is called a negative cycle.
- For two nodes, [math]\displaystyle{ s,t\in V }[/math]:
- A shortest path from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is an [math]\displaystyle{ (s,t) }[/math]-path with minimum length among all [math]\displaystyle{ (s,t) }[/math]-paths.
- The distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is the length of a shortest [math]\displaystyle{ (s,t) }[/math]-path.
Remarks:
- In this context, undirected graphs are usually regarded as symmetric directed graphs such that two opposite arcs have the same length.
- If there are no negative cycles, the distances from a node to itself is zero because the trivial path with no arcs has length zero.
Subpath property of shortest paths
Statement: For [math]\displaystyle{ s,t\in V }[/math] let [math]\displaystyle{ p }[/math] be a shortest [math]\displaystyle{ (s,t) }[/math]-path. Let [math]\displaystyle{ v,w\in V }[/math] be two nodes on [math]\displaystyle{ p }[/math] such that [math]\displaystyle{ v }[/math] precedes [math]\displaystyle{ w }[/math] on [math]\displaystyle{ p }[/math]. Then the subpath of [math]\displaystyle{ p }[/math] from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ w }[/math] is a shortest [math]\displaystyle{ (v,w) }[/math]-path.
Proof: Let [math]\displaystyle{ p_1 }[/math], [math]\displaystyle{ p_2 }[/math] and [math]\displaystyle{ p_3 }[/math] denote the subpaths of [math]\displaystyle{ p }[/math] from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math], from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ w }[/math], and from [math]\displaystyle{ w }[/math] to [math]\displaystyle{ t }[/math], respectively. Suppose for a contradiction that some [math]\displaystyle{ (v,w) }[/math]-path [math]\displaystyle{ p'_2 }[/math] is shorter than [math]\displaystyle{ p_2 }[/math]. Then the concatenation [math]\displaystyle{ p_1+p'_2+p_3 }[/math] would be a shorter [math]\displaystyle{ (s,t) }[/math]-path than [math]\displaystyle{ p }[/math].
Remark: Usually, only subpaths at the beginning of a shortest path are considered. That restricted version is called the prefix property.
Valid distance property
Let [math]\displaystyle{ s\in V }[/math] and for each node [math]\displaystyle{ u\in V }[/math] let [math]\displaystyle{ d_\ell(u) }[/math] denote the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ u }[/math] with respect to the arc lengths [math]\displaystyle{ \ell }[/math].
Statement: For [math]\displaystyle{ (v,w)\in A }[/math], it is [math]\displaystyle{ d_\ell(w)\leq d_\ell(v)+\ell(v,w) }[/math].
Proof: The left-hand side of the inequality is the length of a shortest [math]\displaystyle{ (s,w) }[/math]-path, whereas the right-hand side is the length of some [math]\displaystyle{ (s,w) }[/math]-path (viz. the concatenation of a shortest [math]\displaystyle{ (s,v) }[/math]-path and [math]\displaystyle{ (v,w) }[/math]).
Remark: Node labels [math]\displaystyle{ d }[/math] that fulfill the valid distance property need not be distances.
Distances along shortest paths
Let [math]\displaystyle{ s\in V }[/math] and for each node [math]\displaystyle{ u\in V }[/math] let [math]\displaystyle{ d_\ell(u) }[/math] denote the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ u }[/math] with respect to the arc lengths [math]\displaystyle{ \ell }[/math].
Statement: For an arc [math]\displaystyle{ (v,w) }[/math] on a shortest [math]\displaystyle{ (s,u) }[/math]-path, it is [math]\displaystyle{ d_\ell(w)=d_\ell(v)+\ell(v,w) }[/math].
Proof: Suppose for a contradiction that the statement is not true for some arc [math]\displaystyle{ (v,w) }[/math] on a shortest [math]\displaystyle{ (s,u) }[/math]-path [math]\displaystyle{ p }[/math]. Let [math]\displaystyle{ p_1 }[/math] and [math]\displaystyle{ p_2 }[/math] denote the subpaths of [math]\displaystyle{ p }[/math] from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ w }[/math] and from [math]\displaystyle{ w }[/math] to [math]\displaystyle{ t }[/math], respectively. The valid distance property implies [math]\displaystyle{ d_\ell(w)\lt d_\ell(v)+\ell(v,w) }[/math]. Therefore, the shortest [math]\displaystyle{ (s,w) }[/math]-path [math]\displaystyle{ p'_1 }[/math] is shorter than [math]\displaystyle{ p_1 }[/math], so the concatenation [math]\displaystyle{ p'_1+p_2 }[/math] would be a shorter [math]\displaystyle{ (s,t) }[/math]-path than [math]\displaystyle{ p }[/math].
Reconstruction of a shortest paths
From distances: Suppose that for each node [math]\displaystyle{ v\in V }[/math] the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ v }[/math] is given. For [math]\displaystyle{ t\in V }[/math], a shortest [math]\displaystyle{ (s,t) }[/math]-path can be constructed as follows:
- Set [math]\displaystyle{ v:= }[/math].
- While [math]\displaystyle{ v\neq s }[/math]:
- Find an arc [math]\displaystyle{ (w,v) }[/math]