Basic flow definitions

From Algowiki
Jump to navigation Jump to search

Residual network

Let [math]\displaystyle{ G=(V,A) }[/math] be a directed graph. Without loss of generality, we assume [math]\displaystyle{ (v,w)\in A }[/math] if, and only if, [math]\displaystyle{ (w,v)\in A }[/math]. For [math]\displaystyle{ a\in A }[/math], there are real values [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a) }[/math] such that [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math].

The residual network of [math]\displaystyle{ (G,u) }[/math] with respect to [math]\displaystyle{ f }[/math] is the pair [math]\displaystyle{ (G,u_f)\lt math\gt defined by \lt math\gt u_f(v,w):=u(vw)-f(v,w)+f(w,v) }[/math] for all [math]\displaystyle{ (v,w)\in A }[/math]. The value [math]\displaystyle{ u_f(a) }[/math] is called the residual capacity of [math]\displaystyle{ a\in A }[/math] with respect to [math]\displaystyle{ f }[/math].

Flow-augmenting path

Let [math]\displaystyle{ G=(V,A)\lt /math be a directed graph , \lt math\gt \ell(a) }[/math] and [math]\displaystyle{ u(a) }[/math] and [math]\displaystyle{ f(a)\in[\ell(a)\ldots u(a)] }[/math]

Preflow

Pseudoflow

Valid distance labeling