Basics of shortest paths
Path lengths and distances
Let [math]\displaystyle{ G=(V,A) }[/math] be a simple directed graph and for each arc [math]\displaystyle{ a\in A }[/math] let [math]\displaystyle{ \ell(a) }[/math] be a real number, the length of [math]\displaystyle{ a }[/math].
- The length of an ordinary path (incl. ordinary cycles) is the sum of the lengths of all arcs on this path.
- Depending on the context, the length of a generalized path (incl. generalized cycles) is either defined identically to ordinary paths or, alternatively, the lengths of the backward arcs are not added but subtracted.
- If the length of an ordinary or generalized cycle is negative, this cycle is called a negative cycle.
- For two nodes, [math]\displaystyle{ s,t\in V }[/math]:
- A shortest path from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is an [math]\displaystyle{ (s,t) }[/math]-path with minimum length among all [math]\displaystyle{ (s,t) }[/math]-paths.
- The distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ t }[/math] is the length of a shortest [math]\displaystyle{ (s,t) }[/math]-path.
Remarks:
- In this context, undirected graphs are usually regarded as symmetric directed graphs such that two opposite arcs have the same length.
- If there are no negative cycles, the distances from a node to itself is zero because the trivial path with no arcs has length zero.
Valid distance property
Let [math]\displaystyle{ s\in V }[/math] and for each node [math]\displaystyle{ u\in V }[/math] let [math]\displaystyle{ d_\ell(u) }[/math] denote the distance from [math]\displaystyle{ s }[/math] to [math]\displaystyle{ u }[/math] with respect to the arc lengths [math]\displaystyle{ \ell }[/math]. For [math]\displaystyle{ (v,w)\in A }[/math], it is [math]\displaystyle{ d_\ell(w)\leq d_\ell(v)+\ell(v,w) }[/math] because the left-hand side is the length of a shortest [math]\displaystyle{ (s,w) }[/math]-path, whereas the right-hand side is the length of some [math]\displaystyle{ (s,w) }[/math]-path (viz. the shortest [math]\displaystyle{ (s,v) }[/math] with [math]\displaystyle{ (v,w) }[/math] appended).