Maximum-weight matching

From Algowiki
Revision as of 18:02, 22 November 2014 by Weihe (talk | contribs)
Jump to navigation Jump to search

Basic definitions

  1. Basic graph definitions
  2. Matchings in graphs

Definition

Input:

  1. An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
  2. A real-valued weight [math]\displaystyle{ w(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].

Known algorithms

  1. The Hungarian method for [Basic graph definitions#Bipartite and k-partite graphs|bipartite graphs]]

Remark

The maximum-weight matching problem restricted to bipartite graphs is usually called the assignment problem.