Maximum-weight matching
Basic definitions
Definition
Input:
- An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
- A real-valued weight [math]\displaystyle{ c(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].
Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}c(e)\leq\sum_{e\in M}c(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].
Known algorithms
- The Hungarian method for bipartite graphs
Remark
The maximum-weight matching problem restricted to bipartite graphs is usually called the assignment problem.