Min-cost flow problem
		
		
		
		
		
		Jump to navigation
		Jump to search
		
		
	
Basic definitions
Input
- A simple, anti-symmetric directed graph [math]\displaystyle{ G=(V,A) }[/math].
 - For each arc [math]\displaystyle{ a\in A }[/math], there are two real numbers:
- The upper bound (ak.a. capacity) [math]\displaystyle{ u(a)\geq 0 }[/math].
 - The (unit) cost or cost factor [math]\displaystyle{ c(a)\geq 0 }[/math].
 
 - For each node [math]\displaystyle{ v\in V }[/math], there is a real-valued balance [math]\displaystyle{ b(v) }[/math].
 
Prerequisite for feasibility: [math]\displaystyle{ \sum_{v\in V}b(v)=0 }[/math].
Output
A min-cost flow [math]\displaystyle{ f }[/math], that is, a real number [math]\displaystyle{ f(a) }[/math] for each arc [math]\displaystyle{ a\in A }[/math] such that:
- Capacity constraints: [math]\displaystyle{ 0\leq f(a)\leq u(a) }[/math] for all [math]\displaystyle{ a\in A }[/math].
 - Flow conservation condition: For each node [math]\displaystyle{ v\in V }[/math], it is [math]\displaystyle{ \sum_{w:(v,w)\in A}f(v,w)-\sum_{w:(w,v)\in A}f(w,v)=b(v) }[/math].
 - Optimality: The cost of [math]\displaystyle{ f }[/math], [math]\displaystyle{ c(f):=\sum_{a\in A}c(a)\cdot f(a) }[/math], is minimum among all flows that satisfy the capacity constraints and the flow conservation condition.
 
Negative cost factors
The case that some arcs have negative cost factors, may be transformed as follows into the above version with nonnegative cost factors only. For each arc [math]\displaystyle{ a=(v,w) }[/math] such that [math]\displaystyle{ c(a)\lt 0 }[/math]:
- Turn [math]\displaystyle{ a }[/math], giving a new arc [math]\displaystyle{ a'=(w,v) }[/math].
 - Set [math]\displaystyle{ u(a'):=u(a) }[/math] and [math]\displaystyle{ c(a'):=-c(a) }[/math].
 - Decrease [math]\displaystyle{ b(v) }[/math] by [math]\displaystyle{ u(a) }[/math] and increase [math]\displaystyle{ b(w) }[/math] by [math]\displaystyle{ u(a) }[/math].
 - The resulting flow [math]\displaystyle{ f(a') }[/math] on [math]\displaystyle{ a' }[/math] is transformed back into [math]\displaystyle{ f(a):=u(a)-f(a') }[/math].