Binary search tree: remove node
General Information
Algorithmic problem: See the remark clause of Binary Search Tree; pointer p as defined there is the input.
Prerequisites: [math]\displaystyle{ p.left \neq void }[/math]
Type of algorithm: loop
Auxiliary data: A pointer [math]\displaystyle{ p' }[/math] of type "pointer to a binary search tree node".
Abstract View
Invariant:
- The immediate predecessor of K is in the range of [math]\displaystyle{ p' }[/math].
- It is [math]\displaystyle{ p'.right = void }[/math].
Variant: The pointer [math]\displaystyle{ p' }[/math] descends one level deeper to [math]\displaystyle{ p'.right }[/math].
Break condition: It is [math]\displaystyle{ p'.right.right = void }[/math].
Induction Basis
Abstract view: If [math]\displaystyle{ p.left }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, initialize [math]\displaystyle{ p' }[/math].
Implementation:
- If [math]\displaystyle{ p.left.right = void }[/math]:
- Set [math]\displaystyle{ p.key := p.left.key }[/math]
- Set [math]\displaystyle{ p.left := p.left.left }[/math].
- Terminate the algorithm.
- Otherwise, set [math]\displaystyle{ p' := p.left }[/math].
Proof: Obvious.
Induction Step
Abstract view: If [math]\displaystyle{ p'.right }[/math] is the immediate predecessor of K, overwrite K by its immediate predecessor and terminate; otherwise, let p' descend one level deeper.
Implementation:
- If [math]\displaystyle{ p'.right.right = void }[/math]:
- Set [math]\displaystyle{ p.key := p'.right.key }[/math].
- Set [math]\displaystyle{ p'.right := p'.right.left }[/math].
- Terminate the algorithm.
Correctness: Obvoius.
Complexity
Statement: Linear in the length of the sequence in the worst case (more precisely, linear in the height of the tree).
Proof: Obvious.