Ahuja-Orlin

From Algowiki
Jump to navigation Jump to search

General Information

Algorithmic problem: Max-Flow Problems

Type of algorithm: loop

Abstract View

Invariant: After [math]\displaystyle{ i \ge 0 }[/math] iterations:

  1. The flow [math]\displaystyle{ f }[/math] is a fleasible flow.
  2. If all upper bounds are integral, [math]\displaystyle{ f }[/math] is integral as well.
  3. There is a valid distance labeling [math]\displaystyle{ d }[/math] with respect to [math]\displaystyle{ f }[/math].
  4. Each node [math]\displaystyle{ v\in V\setminus\{t\} }[/math] has a current arc, which is either void or one of the outgoing arcs of [math]\displaystyle{ v }[/math].
  5. Stack [math]\displaystyle{ S }[/math] contains a current flow-augmenting path with respect to [math]\displaystyle{ f }[/math]. This path starts with [math]\displaystyle{ s }[/math] and ends at an arbitrary node of [math]\displaystyle{ G }[/math]. Each arc on this path is the current arc of its tail node.

Variant: Exactly one of the following actions will take place in the current iteration:

  1. An arc is appended to the current path.
  2. At least one arc is saturated.
  3. The distance label of some node is increased.

Break condition: [math]\displaystyle{ d(s)\geq n }[/math].

Induction basis

Abstract view:

  1. We start with some feasible flow, for example, the zero flow.
  2. For each [math]\displaystyle{ v\in V }[/math], [math]\displaystyle{ d(v) }[/math] is initialized to be the smallest number of arcs from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ t }[/math].
  3. Stack [math]\displaystyle{ S }[/math] is initialized so as to contain [math]\displaystyle{ s }[/math] and no other node.
  4. The current arc of each node [math]\displaystyle{ v\in V }[/math] is reset to be the very first out

Implementation:

  1. For all [math]\displaystyle{ a \in A }[/math], set [math]\displaystyle{ f(a):=0. }[/math]
  2. Run a BFS on the transpose of [math]\displaystyle{ G }[/math] with start node [math]\displaystyle{ t }[/math] and unit arc lengths; the resulting distances are the [math]\displaystyle{ d }[/math]-labels.
  3. Create [math]\displaystyle{ S }[/math] and push [math]\displaystyle{ s }[/math] onto [math]\displaystyle{ S }[/math].
  4. Reset the current arcs.

Proof: Obvious.

Induction step

Abstract view:

  1. Let [math]\displaystyle{ v }[/math] be the top element of [math]\displaystyle{ S }[/math], that is, the endnode of the corresponding path.
  2. If [math]\displaystyle{ v=t }[/math]:
    1. Augment the current flow along the path correspoding to [math]\displaystyle{ S }[/math].
    2. Remove all nodes but [math]\displaystyle{ s }[/math] from [math]\displaystyle{ S }[/math].
  3. While the current arc of [math]\displaystyle{ v }[/math] is not void and not admissible, move the current arc one step forward.
  4. Otherwise, if the current arc is void:
    1. Let [math]\displaystyle{ \tilde{d} }[/math] denote the minimum value [math]\displaystyle{ d(w) }[/math] fo any arc [math]\displaystyle{ (v,w) }[/math] in the residual network.
    2. Set [math]\displaystyle{ d(v):=\tilde{d}+1 }[/math].
  5. Otherwise, that is, if the current arc is some arc [math]\displaystyle{ (v,w) }[/math]: Push [math]\displaystyle{ w }[/math] on [math]\displaystyle{ S }[/math].

Proof: First, we have to show that validity of the distance labeling is maintained.

Always valid

Complexity

Remark

This algorithm may be seen as a "lazy" variant on Edmonds-Karp. In fact, the most expensive step there is the computation of a flow-augmenting [math]\displaystyle{ (s,t) }[/math]-path. This task amounts to computing the true distance from every node to [math]\displaystyle{ t }[/math]. A valid distance labeling may be seen as "lazily evaluated" true distances.