Bipartite graph

From Algowiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
A simple bipartite graph

Definition

An undirected graph [math]\displaystyle{ G=(V,E) }[/math] is called bipartite if there is a partition of [math]\displaystyle{ V }[/math], [math]\displaystyle{ V=V_{1} \dot\cup V_{2} }[/math], such that for every edge [math]\displaystyle{ \{ v,w \} \in E }[/math] it is [math]\displaystyle{ v \in V_{1} \Leftrightarrow w \in V_{2} }[/math].

Absence of odd cycles

Theorem: An undirected graph [math]\displaystyle{ G=(V,E) }[/math] is bipartite if, and only if, [math]\displaystyle{ G }[/math] has no cycle of odd length.

Proof:

  • First suppose [math]\displaystyle{ G }[/math] contains at least one cycle [math]\displaystyle{ v_{1} - v_{2} - ... - v_{k} - v_{1} }[/math] of odd length [math]\displaystyle{ k \in \N }[/math]. Without loss of generality, we assume [math]\displaystyle{ v_{1} \in V_{1} }[/math]. Then it is [math]\displaystyle{ v_{i} \in V_{1} }[/math] for all odd [math]\displaystyle{ i }[/math] and [math]\displaystyle{ v_{i} \in V_{2} }[/math] for all even [math]\displaystyle{ i }[/math]. The edge [math]\displaystyle{ \{ v,w \} }[/math] contradicts bipartiteness.
  • Now suppose that [math]\displaystyle{ G }[/math] contains no cycle of odd length. We will prove bipartiteness constructively. Without loss of generality, we may assume that [math]\displaystyle{ G }[/math] is connected (otherwise, each connected component may be considered separately). We choose an node [math]\displaystyle{ v\in V }[/math], which will be fix, and start with an arbitrary node [math]\displaystyle{ u \in V }[/math] and label each node "[math]\displaystyle{ x }[/math]" if its distance (smallest number of edges) from [math]\displaystyle{ v }[/math] is even, and "[math]\displaystyle{ y }[/math]" otherwise. Suppose for a contradiction that there is an edge [math]\displaystyle{ \{ v,w \} }[/math] such that both endnotes have the same label. Then the shortest paths from [math]\displaystyle{ u }[/math] to [math]\displaystyle{ v }[/math] and [math]\displaystyle{ w }[/math] plus this edge from an odd cycle (which is not simple but can be easily reduced to a simple cycle, which is odd again).