Heap as array

From Algowiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

General information

Abstract Data Structure: Bounded priority queue

Implementation Invariant:

  1. For each object of "Heap as array", there is
    1. a specific maximum number of items [math]\displaystyle{ N_\text{max}\in\mathbb{N} }[/math], which is constant throughout the object's lifetime.
    2. a current number of items [math]\displaystyle{ N\in\mathbb{N}_{0} }[/math], which is dynamically changing, but it is [math]\displaystyle{ N\le N_\text{max} }[/math] at any time.
  2. There is an internal type heap item with two components:
    1. a component named [math]\displaystyle{ key }[/math] of type [math]\displaystyle{ \mathcal{K} }[/math]
    2. a component named [math]\displaystyle{ ID }[/math], which is a natural number and ranges from [math]\displaystyle{ 1,...,N_\text{max} }[/math].
  3. There is an array [math]\displaystyle{ TheHeap }[/math] with index range [math]\displaystyle{ 1,...,N_\text{max} }[/math] and component type heap item. The currently stored items are [math]\displaystyle{ TheHeap[1],...,TheHeap[N] }[/math].
  4. There is an index handler [math]\displaystyle{ IH }[/math] with maximum size [math]\displaystyle{ N_\text{max} }[/math] and value type [math]\displaystyle{ \{1,\ldots,N_\text{max}\} }[/math]. For each used index [math]\displaystyle{ i\in\{1,...,N_\text{max}\} }[/math], the associated value is the position of one of the [math]\displaystyle{ N }[/math] heap items in [math]\displaystyle{ TheHeap }[/math]. As long as this heap item is stored, [math]\displaystyle{ i }[/math] is permanently associated with this heap item (and can hence be used to locate and access this heap item at any time). The correspondence between the heap items and these numbers [math]\displaystyle{ i }[/math] is one-to-one.
  5. Heap property: For each [math]\displaystyle{ i\in\{2,...,N\} }[/math], it is [math]\displaystyle{ TheHeap[i].key\ge TheHeap[\lfloor i/2 \rfloor ].key. }[/math].

The heap property may be viewed as follows: Imagine a binary tree of [math]\displaystyle{ N }[/math] nodes such that each height level except for the last one is full, and the last one is filled from left to right. The nodes have pairwise different indexes from [math]\displaystyle{ \{ 1,...,N \} }[/math]:

  1. The root is indexed [math]\displaystyle{ 1 }[/math].
  2. For a node with [math]\displaystyle{ i }[/math], the left child (if existing) has index [math]\displaystyle{ 2*i }[/math], and the right child (if existing) has index [math]\displaystyle{ 2*i+1 }[/math].

Now associate the node with index [math]\displaystyle{ i }[/math] with the key [math]\displaystyle{ TheHeap[i].key }[/math]. Then the heap property says that the key of a node is not larger than the keys of its children. In this case, we say that i fulfills the heap property.

In particular, the minimum key is associated with the root.

Remark

The implementations of the methods Bounded priority queue: number and Bounded priority queue: find minimum are trivial and, hence, left out here.

References