Matchings in graphs: Difference between revisions

From Algowiki
Jump to navigation Jump to search
Line 28: Line 28:
== Variations ==
== Variations ==


# '''Bipartite matching:''' The graph <math>G=(V,E)</math> is [[Basic graph definitions#Partitions|bipartite]].
# '''Bipartite matching:''' The graph <math>G=(V,E)</math> is [[Basic graph definitions#Bipartite and <math>k</math>-partite graphs|bipartite]].

Revision as of 13:30, 17 November 2014

Definitions

  1. Let [math]\displaystyle{ G=(V,E) }[/math] be an undirected graph. A matching in [math]\displaystyle{ G }[/math] is a set [math]\displaystyle{ M }[/math] of edges such that no two edges in [math]\displaystyle{ M }[/math] are incident.
  2. A node [math]\displaystyle{ v\in V }[/math] is matched with respect to a matching [math]\displaystyle{ M }[/math] if it is incident to a member of [math]\displaystyle{ M }[/math]; otherwise, [math]\displaystyle{ v }[/math] is called free or exposed.
  3. A path [math]\displaystyle{ p }[/math] in an undirected graph [math]\displaystyle{ G=(V,E) }[/math] is called alternating with respect to some matching [math]\displaystyle{ M }[/math] if, for any two subsequent edges on [math]\displaystyle{ p }[/math], exactly one of them belongs to [math]\displaystyle{ M }[/math]. Consequently, the edges in [math]\displaystyle{ M }[/math] and the edges not in [math]\displaystyle{ M }[/math] appear strictly alternatingly on [math]\displaystyle{ p }[/math].
  4. A path [math]\displaystyle{ p }[/math] in an undirected graph [math]\displaystyle{ G=(V,E) }[/math] is called augmenting with respect to some matching [math]\displaystyle{ M }[/math] if [math]\displaystyle{ p }[/math] is alternating and both of its end nodes are exposed.

Cardinality-maximal matching

Input: An undirected graph [math]\displaystyle{ G=(V,E) }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ |M'|\leq|M| }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].

Known algorithms:

  1. Maximum matching by Edmonds

Maximum weighted matching

Input:

  1. An undirected graph [math]\displaystyle{ G=(V,E) }[/math].
  2. A weight [math]\displaystyle{ w(e) }[/math] for each edge [math]\displaystyle{ e\in E }[/math].

Output: A matching [math]\displaystyle{ M }[/math] in [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ \sum_{e\in M'}w(e)\leq\sum_{e\in M}w(e) }[/math] for any other matching [math]\displaystyle{ M' }[/math] in [math]\displaystyle{ G }[/math].

Variations

  1. Bipartite matching: The graph [math]\displaystyle{ G=(V,E) }[/math] is [[Basic graph definitions#Bipartite and [math]\displaystyle{ k }[/math]-partite graphs|bipartite]].