Matchings in graphs: Difference between revisions

From Algowiki
Jump to navigation Jump to search
No edit summary
Line 3: Line 3:
# Let <math>G=(V,E)</math> be an [[Basic graph definitions|undirected graph]]. A '''matching''' in <math>G</math> is a set <math>M\subseteq E</math> of edges such that no two edges in <math>M</math> are [[Basic graph definitions#Adjacency, incidence, and degree|incident]].
# Let <math>G=(V,E)</math> be an [[Basic graph definitions|undirected graph]]. A '''matching''' in <math>G</math> is a set <math>M\subseteq E</math> of edges such that no two edges in <math>M</math> are [[Basic graph definitions#Adjacency, incidence, and degree|incident]].
# A node <math>v\in V</math> is '''matched''' with respect to a matching <math>M</math> if it is incident to a member of <math>M</math>; otherwise, <math>v</math> is called '''free''' or '''exposed'''.
# A node <math>v\in V</math> is '''matched''' with respect to a matching <math>M</math> if it is incident to a member of <math>M</math>; otherwise, <math>v</math> is called '''free''' or '''exposed'''.
# A matching is called '''perfect''' if there is no exposed node. A perfect matching <math>M</math> is only possible if <math>|V|</math> is even. Then <math>M</math> is perfect if, and only if, <math>|M|=|V|/2</math>.
# A matching is called '''perfect''' if there is no exposed node.
 
'''Remark:'''
A perfect matching <math>M</math> is only possible if <math>|V|</math> is even. Then <math>M</math> is perfect if, and only if, <math>|M|=|V|/2</math>.


== Alternating and augmenting paths ==
== Alternating and augmenting paths ==

Revision as of 10:21, 21 November 2014

Matchings

  1. Let [math]\displaystyle{ G=(V,E) }[/math] be an undirected graph. A matching in [math]\displaystyle{ G }[/math] is a set [math]\displaystyle{ M\subseteq E }[/math] of edges such that no two edges in [math]\displaystyle{ M }[/math] are incident.
  2. A node [math]\displaystyle{ v\in V }[/math] is matched with respect to a matching [math]\displaystyle{ M }[/math] if it is incident to a member of [math]\displaystyle{ M }[/math]; otherwise, [math]\displaystyle{ v }[/math] is called free or exposed.
  3. A matching is called perfect if there is no exposed node.

Remark: A perfect matching [math]\displaystyle{ M }[/math] is only possible if [math]\displaystyle{ |V| }[/math] is even. Then [math]\displaystyle{ M }[/math] is perfect if, and only if, [math]\displaystyle{ |M|=|V|/2 }[/math].

Alternating and augmenting paths

  1. A path [math]\displaystyle{ p }[/math] in an undirected graph [math]\displaystyle{ G=(V,E) }[/math] is called alternating with respect to some matching [math]\displaystyle{ M }[/math] if, for any two subsequent edges on [math]\displaystyle{ p }[/math], exactly one of them belongs to [math]\displaystyle{ M }[/math]. In other words, the edges in [math]\displaystyle{ M }[/math] and the edges not in [math]\displaystyle{ M }[/math] appear strictly alternatingly on [math]\displaystyle{ p }[/math].
  2. A path [math]\displaystyle{ p }[/math] in an undirected graph [math]\displaystyle{ G=(V,E) }[/math] is called augmenting with respect to some matching [math]\displaystyle{ M }[/math] if [math]\displaystyle{ p }[/math] is alternating and both of its end nodes are exposed.
  3. Augmenting a matching [math]\displaystyle{ M }[/math] along an augmenting path [math]\displaystyle{ p }[/math] means increasing the size of [math]\displaystyle{ M }[/math] by one as follows:
    1. Each edge of [math]\displaystyle{ p }[/math] that was in [math]\displaystyle{ M }[/math] immediately before this augmentation step, is removed from [math]\displaystyle{ M }[/math].
    2. Each edge of [math]\displaystyle{ p }[/math] that was not in [math]\displaystyle{ M }[/math] immediately before this augmentation step, is inserted in [math]\displaystyle{ M }[/math].